Three ways to cover a graph
نویسندگان
چکیده
We consider the problem of covering a host graph G with several graphs from a fixed template class T . The classical covering number of G with respect to T is the minimum number of template graphs needed to cover the edges of G. We introduce two new parameters: the local and the folded covering number. Each parameter measures how far G is from the template class in a different way. Whereas the folded covering number has been investigated thoroughly for some template classes, e.g., interval graphs and planar graphs, the local covering number was given only little attention. We provide new bounds on each covering number w.r.t. the following template classes: linear forests, star forests, caterpillar forests, and interval graphs. The classical graph parameters turning up this way are interval-number, track-number, and linear-, star-, and caterpillar arboricity. As host graphs we consider graphs of bounded degeneracy, bounded degree, or bounded (simple) tree-width, as well as, outerplanar, planar bipartite and planar graphs. For several pairs of a host class and a template class we determine the maximum (local, folded) covering number of a host graph w.r.t. that template class exactly.
منابع مشابه
Bounding cochordal cover number of graphs via vertex stretching
It is shown that when a special vertex stretching is applied to a graph, the cochordal cover number of the graph increases exactly by one, as it happens to its induced matching number and (Castelnuovo-Mumford) regularity. As a consequence, it is shown that the induced matching number and cochordal cover number of a special vertex stretching of a graph G are equal provided G is well-covered bipa...
متن کاملCohen-Macaulay $r$-partite graphs with minimal clique cover
In this paper, we give some necessary conditions for an $r$-partite graph such that the edge ring of the graph is Cohen-Macaulay. It is proved that if there exists a cover of an $r$-partite Cohen-Macaulay graph by disjoint cliques of size $r$, then such a cover is unique.
متن کاملON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS
Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...
متن کاملOn the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کاملComplexity of the Cover Polynomial
The cover polynomial introduced by Chung and Graham is a twovariate graph polynomial for directed graphs. It counts the (weighted) number of ways to cover a graph with disjoint directed cycles and paths, it is an interpolation between determinant and permanent, and it is believed to be a directed analogue of the Tutte polynomial. Jaeger, Vertigan, and Welsh showed that the Tutte polynomial is #...
متن کاملSome Graph Polynomials of the Power Graph and its Supergraphs
In this paper, exact formulas for the dependence, independence, vertex cover and clique polynomials of the power graph and its supergraphs for certain finite groups are presented.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 339 شماره
صفحات -
تاریخ انتشار 2016